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Abstract

A CO2 eddy flux tower study has recently reported that an old-growth stand of seasonally moist tropical evergreen forest in Santarém,

Brazil, maintained high gross primary production (GPP) during the dry seasons [Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M.

L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton,

M., Munger, J. W., Pyle, E. H., Rice, A. H., & Silva, H. (2003). Carbon in amazon forests: Unexpected seasonal fluxes and disturbance-

induced losses. Science, 302, 1554–1557]. It was proposed that seasonally moist tropical evergreen forests have evolved two adaptive

mechanisms in an environment with strong seasonal variations of light and water: deep roots system for access to water in deep soils and leaf

phenology for access to light. Identifying tropical forests with these adaptive mechanisms could substantially improve our capacity of

modeling the seasonal dynamics of carbon and water fluxes in the tropical zone. In this paper, we have analyzed multi-year satellite images

from the VEGETATION (VGT) sensor onboard the SPOT-4 satellite (4/1998–12/2002) and the Moderate Resolution Imaging

Spectroradiometer (MODIS) onboard the Terra satellite (2000–2003). We reported temporal analyses of vegetation indices and simulations

of the satellite-based vegetation photosynthesis model (VPM). The Enhanced Vegetation Index (EVI) identified subtle changes in the

seasonal dynamics of leaf phenology (leaf emergence, leaf aging and leaf fall) in the forest, as suggested by the leaf litterfall data. The land

surface water index (LSWI) indicated that the forest experienced no water stress in the dry seasons of 1998–2002. The VPM model, which

uses EVI, LSWI and site-specific climate data (air temperature and photosynthetically active radiation, PAR) for 2001–2002, predicted high

GPP in the late dry seasons, consistent with observed high evapotranspiration and estimated GPP from the CO2 eddy flux tower.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Seasonally moist tropical forests in the Amazon basin

have high annual precipitation with distinct wet and dry

seasons. There is a strong seasonality of photosynthetically
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active radiation (PAR), usually being much larger in the dry

season than in the wet season. Field studies at individual

sites in the Amazon region have shown that seasonally

moist tropical forests maintain high gross and net primary

production (GPP and NPP) throughout dry seasons that

extend up to 5–6 months (Nepstad et al., 1994; Saleska et

al., 2003). The seasonally moist tropical forests may have

evolved two adaptive mechanisms to maximize carbon

uptake in an environment with large seasonal variations of

light and water. One adaptive mechanism is that many
ent 94 (2005) 105–122
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plants in the tropical forest have deep roots (10-m and

deeper) for getting access to water in deep soils during the

dry season (Nepstad et al., 1994). For the dense forest at the

Tapajos National Forest in Brazil, dry season evapotranspi-

ration was ~4.0 mm/day while wet–season evapotranspira-

tion was ~3.2 mm/day (da Rocha et al., in press). The

second adaptive mechanism may be the leaf phenology

(seasonal dynamics of leaf fall and leaf emergence). Field

observations have shown that seasonally moist tropical

evergreen forests in the Amazon basin have distinct seasonal

dynamics of litterfall, with a peak litterfall rate during the

dry season (Luizao, 1989) and dry-season flushing of new

leaves (Sarmiento et al., 1985; Van Schaik et al., 1993;

Wright & van Schaik, 1994).

In this study, we combined analyses of satellite images

with field data from a CO2 flux tower site of seasonally

moist tropical evergreen forest in Brazil (Saleska et al.,

2003). The objective of this study was to develop and

validate a new satellite-based vegetation photosynthesis

model (VPM) for estimating seasonal dynamics of GPP in

a seasonally moist tropical evergreen forest. The VPM

model (Xiao et al., 2004a,b) takes advantages of addi-

tional spectral bands (e.g., blue and shortwave infrared

(SWIR)) that are available from advanced optical sensors.

This new generation of optical sensors includes VEGE-

TATION (VGT) sensor onboard the SPOT-4 satellite, and

the Moderate Resolution Imaging Spectroradiometer

(MODIS) onboard the NASA Terra and Aqua satellites,

both of which offer the potential for improved character-

ization of vegetation at the global scale. The input data to

the VPM model are the enhanced vegetation index (EVI;

Huete et al., 1997), the land surface water index (LSWI;

(Xiao et al., 2004a)), air temperature, and PAR.

Over the last few decades, the time-series data of the

normalized difference vegetation index (NDVI), which is

calculated as the normalized ratio between red and near-

infrared (NIR) bands, have been widely used in satellite-

based modeling of GPP and NPP of terrestrial vegetation

(Field et al., 1995; Nemani et al., 2003; Potter et al., 1993;

Prince & Goward, 1995). The advanced very high reso-

lution radiometer (AVHRR) sensors that have red and near-

infrared (NIR) bands have provided multi-decadal time

series of NDVI data for the globe. However, it is well

known that NDVI has several limitations, including

saturation in a multilayer closed canopy and sensitivity to

both atmospheric aerosols and the soil background (Huete et

al., 2002; Xiao et al., 2003). To account for these limitations

of NDVI, the enhanced vegetation index (EVI) was

developed (Huete et al., 1997).

NDVI ¼ qnir � qred

qnir þ qred

ð1Þ

EVI ¼ 2:5� qnir � qred

qnir þ ð6� qred � 7:5� qblueÞ þ 1
: ð2Þ

EVI includes the blue band for atmospheric correction,

which is one important feature for the study in the Amazon
basin where seasonal burning of pasture and forest takes

place throughout the dry season, either for agricultural

purpose (land clearing) or natural fire events. The smoke

and aerosols from the biomass burning could affect NDVI

substantially, irrespective of vegetation changes. The

advanced optical sensors (VGT and MODIS) have addi-

tional spectral bands (e.g., blue and shortwave infrared),

making it possible to develop time-series data of improved

vegetation indices. EVI has recently been used for the study

of temperate forests (Boles et al., 2004; Xiao et al., 2004a;

Zhang et al., 2003), and is much less sensitive to aerosols

(from biomass burning) than is NDVI (Xiao et al., 2003).

As the short infrared (SWIR) spectral band is sensitive to

vegetation water content and soil moisture, a combination of

NIR and SWIR bands have been used to derive water-

sensitive vegetation indices (Ceccato et al., 2001, 2002a,b;

Xiao et al., 2004a), including the land surface water index

(LSWI; Boles et al., 2004; Xiao et al., 2002, 2004a).

LSWI ¼ qnir � qswir

qnir þ qswir

: ð3Þ

As leaf liquid water content increases or soil moisture

increases, SWIR absorption increases and SWIR reflectance

decreases, resulting in an increase of LSWI value. Recent

work in evergreen needleleaf forests have shown that LSWI

is sensitive to changes in leaf water content (equivalent

water thickness (EWT), g H2O/m
2) over time (Maki et al.,

2004; Xiao et al., 2004a).
2. Brief description of the vegetation photosynthesis

model (VPM)

2.1. Overview of the VPM model

Leaves and canopy are composed of photosynthetically

active vegetation (PAV; chloroplasts) and non-photosyn-

thetic vegetation (NPV; e.g., stem, branch, cell wall, vein).

Based on the conceptual partitioning of PAV and NPV, the

VPM model was recently developed to estimate GPP of

forests (Xiao et al., 2004a,b). Here we give a brief

description of the VPM model:

GPP ¼ eg � FAPARPAV � PAR ð4Þ

eg ¼ e0 � Tscalar �Wscalar � Pscalar ð5Þ

where PAR is the photosynthetically active radiation

(lmol/m2/s, photosynthetic photon flux density, PPFD),

FAPARPAV is the fraction of PAR absorbed by PAV

(chloroplasts), eg is the light use efficiency (Amol CO2/Amol

mol PAR). The parameter q0 is the apparent quantum yield or

maximum light use efficiency (lmol CO2 /Amol PAR), and

Tscalar, Wscalar and Pscalar are the down-regulation scalars for

the effects of temperature, water and leaf phenology on the

light use efficiency of vegetation, respectively.
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In the current version of the VPM model, FAPARPAV is

assumed to be a linear function of EVI, and the coefficient a

in Eq. (6) is simply set to be 1.0 (Xiao et al., 2004a,b):

FAPARPAV ¼ a� EVI ð6Þ

Tscalar is estimated at each time step, using the equation

developed for the Terrestrial Ecosystem Model (Raich et al.,

1991):

Tscalar ¼
ðT � TminÞðT � TmaxÞ

½ðT � TminÞðT � TmaxÞ� � ðT � ToptÞ2
ð7Þ

where Tmin, Tmax and Topt are minimum, maximum and

optimal temperature for photosynthetic activities, respec-

tively. If air temperature falls below Tmin, Tscalar is set to be

zero.

Wscalar, the effect of water on plant photosynthesis, has

been estimated as a function of soil moisture and/or vapor

pressure deficit (VPD) in a number of Production Efficiency

Models (Field et al., 1995; Prince & Goward, 1995;

Running et al., 2000). As the first order of approximation,

we proposed an alternative and simple approach that uses a

satellite-derived water index to estimate the seasonal

dynamics of Wscalar (Xiao et al., 2004a,b).

Wscalar ¼
1þ LSWI

1þ LSWImax

ð8Þ

where LSWImax is the maximum LSWI within the plant-

growing season for individual pixels.

Pscalar is included to account for the effect of leaf

phenology (leaf age) on photosynthesis at the canopy level.

In this version of the VPM model, calculation of Pscalar is

dependent upon the longevity of leaves (deciduous, versus

evergreen). For a canopy that is dominated by leaves with a

life expectancy of 1 year (one growing season, e.g.,

deciduous trees), Pscalar is calculated at two different phases

as a linear function (Xiao et al., 2004b):

Pscalar ¼
1þ LSWI

2
ð9Þ

During bud burst to leaf full expansion

Pscalar ¼ 1 After leaf full expansion ð10Þ

LSWI values range from �1 to +1 (a range of 2), and the

simplest formulation of Pscalar (Eq. (9)) is a linear scalar

with a value range of 0 to 1. Evergreen broadleaf trees in the

tropical zone have a green canopy throughout the year

because foliage is retained for several growing seasons.

Canopies of evergreen broadleaf forests are thus composed

of green leaves of various ages. In this version of the VPM

model, a simple assumption of Pscalar is made for evergreen

broadleaf forests, similar to the assumption we used for

evergreen needleleaf forests (Xiao et al., 2004a):

Pscalar ¼ 1 ð11Þ
2.2. Parameter estimation of the VPM model

The VPM model has three sets of parameters to be

estimated. The first parameter set is the maximum light use

efficiency (e0) which varies with vegetation types. Informa-

tion about e0 for individual vegetation types can be obtained

from analysis of net ecosystem exchange (NEE) of CO2 and

incident PAR (Amol/m2/s photosynthetic photon flux den-

sity) at a CO2 eddy flux tower site. The estimation of the q0
parameter is largely determined by the choice of either a

linear or nonlinear model between NEE and incident PAR

data (generally at half-hour time-step) over a year (Frolking

et al., 1998; Ruimy et al., 1995). In the VPM model, we used

q0 value derived from the nonlinear model between NEE and

PAR (Xiao et al., 2004a). For tropical evergreen forests, we

used an e0 value of 0.045 Amol CO2/Amol PAR, derived from

the time-series data of NEE and incident PAR at the CO2 flux

tower sites (Goulden et al., in press; Malhi et al., 1998).

The second parameter set is for calculation of Tscalar (see

Eq. (7)). For tropical forest, we used a minimum temper-

ature (Tmin) of 2 8C, optimum temperature (Topt) of 28 8C,
and maximum temperature (Tmax) of 48 8C, as implemented

in the process-based Terrestrial Ecosystem Model (Raich et

al., 1991; Tian et al., 1998). The third parameter set is for

calculation of Wscalar (see Eq. (8)). Estimation of site-

specific LSWImax is dependent upon the optical sensor and

the time series of image data. The maximum LSWI value

within the plant-growing season was selected as an estimate

of LSWImax (Xiao et al., 2004a,b).
3. The study site and data

3.1. Site-specific data from the eddy flux tower site

The field study site is an old-growth, seasonally wet

tropical evergreen forest, located in the Tapajós National

Forest near km67 (2851VS and 54858VW) of the Santarém-

Cuiabá highway, south of Santarém, Pará, Brazil. This site

(thereafter referred to as bkm67 site) has an annual mean

temperature of 25 8C, annual mean humidity of 85%, an

annual precipitation of about 1920 mm with strong seasonal

dynamics (Rice et al., in press; Saleska et al., 2003). Soils in

the site are primarily nutrient-poor clay oxisols with some

sandy utisols (Silver et al., 2000). The 7-month wet season is

usually from December through June, and the dry season is

from July to November (Fig. 1a). An eddy covariance flux

tower has been operating nearly continuously at the site to

measure CO2, H2O and energy fluxes since April 2001. A

recent study (Saleska et al., 2003) reported that the forest site

acted as a carbon source in the wet season and a carbon sink in

the dry season, largely attributed to more ecosystem

respiration (including soil respiration) in the wet season than

in the dry season (Fig. 1b). High daytime NEE flux (Fig. 1b)

and H2O flux in the dry season were observed, and high GPP

in the dry season were inferred (Saleska et al., 2003). These



Fig. 1. The seasonal dynamics of (a) climate and (b) net ecosystem exchange of CO2 (NEE) at the km67 eddy flux tower site in Santarém, Brazil.

NEEobs(night)—nighttime sum of NEE; NEEobs(day)—daytime sum of NEE; NEEobs—daily sum of NEE. Positive NEE values represent a carbon source and

negative NEE values represent a carbon sink. The gap-filled NEE data (Saleska et al., 2003) were used in the graph and analysis.
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contrast with the estimates from some process-based bio-

geochemical models (Botta et al., 2002; Tian et al., 1998) that

predict severe soil moisture and/or water vapor pressure

deficit constraints on GPP in the dry season.

Daily climate, CO2 and H2O flux data were aggregated to

the 10-day interval as defined by the 10-day composite VGT

images (see Section 3.2) and the 8-day interval as defined

by the 8-day composite MODIS images (see Section 3.3),

respectively. We calculated the sums of PAR and H2O fluxes

over 10- and 8-day periods, and the averages of daytime air

temperature over 10- and 8-day periods. We also used the

leaf litterfall data collected at the study site since July 2000

(Rice et al., in press). Litter data collection used 40 circular,
mesh screen traps (0.43 m in diameter), randomly located

throughout the 19.75 tree survey area. Litter samples were

collected every 2 weeks. The litterfall from each trap was

sorted into four categories (1) leaves, (2) fruits and flowers,

(3) wood (b2-cm in diameter), and (4) miscellaneous. In this

paper, we used the averaged leaf litterfall data for each of

sampling periods.

3.2. 10-day composite Images from the VEGETATION

sensor

The VEGETATION (VGT) sensor onboard the SPOT-4

satellite is one of a new generation of space-borne optical
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sensors that were designed for the observation of vegetation

and land surfaces. The VGT instrument has four spectral

bands: blue (430–470 nm), red (610–680 nm), near-infrared

(NIR, 780–890 nm), and shortwave infrared (SWIR, 1580–

1750 nm). The blue band is primarily used for atmospheric

correction. The SWIR band is sensitive to soil moisture,

vegetation cover, and leaf moisture content. Unlike scanner

sensors (e.g., AVHRR, MODIS), the VGT instrument uses

the linear-array technology (push-broom), and thus produce

high-quality images at moderate resolution (1 km) with

greatly reduced distortion. Since its launch in March 1998,

the VGT instrument has acquired daily images at 1-km

spatial resolution for the globe.

The VEGETATION Programme produces three standard

VGT products: VGT-P (physical product), VGT-S1 (daily

synthesis product) and VGT-S10 (10-day synthesis prod-

uct). The spectral bands in the VGT-S1 products are

estimates of ground surface reflectance, as atmospheric

correction of ozone, aerosols and water vapor have been

applied to the VGT-P images using the Simplified Method

for Atmospheric Correction (SMAC) algorithm (Rahman &

Dedieu, 1994). VGT-S10 data are generated by selecting the

VGT-S1 pixels that have the maximum Normalized Differ-

ence Vegetation Index (NDVI) values within a 10-day

period. The maximum NDVI value composite (MVC)

approach helps minimize the effects of cloud cover and

variability in atmospheric optical depth. There are three 10-

day composites for 1 month: day 1–10, day 11–20, and day

21 to the last day of the months. The VGT-S10 products are

freely available to the public (http://free.vgt.vito.be).

We have acquired the VGT-S10 data over the period of

April 1–10, 1998 to December 21–31, 2002 for the globe.

We calculated NDVI, EVI and LSWI, using the surface

reflectance of blue (qblue), red (qred), NIR (qnir), and SWIR

(qswir) bands from the standard VGT-S10 data. A detailed

description of the preprocessing and calculation of vegeta-

tion indices from the VGT-S10 data are provided elsewhere

(Xiao et al., 2003). Cloudy observations in a time series of

vegetation indices were gap-filled using a simple gap-filling

method and the cloud quality flag in the VGT-S10 surface

reflectance files (Xiao et al., 2003). In this study, we

selected 3�3 pixels (approximately 3�3 km2) that centered

on the CO2 eddy flux tower site in the Tapajós National

Forest near km67 (2851VS and 54858VW) of the Santarém-

Cuiabá highway, south of Santarém, Pará, Brazil (Saleska et

al., 2003). We calculated the mean and standard deviation of

vegetation indices over the 3�3 pixels.

3.3. 8-day composite images and 16-day composite images

from MODIS sensor

Of the 36 spectral bands in the MODIS sensor, seven

spectral bands are primarily designed for the study of

vegetation and land surfaces: blue (459–479 nm), green

(545–565 nm), red (620–670 nm), NIR (841–875 nm,

1230–1250 nm), and SWIR (1628–1652 nm, 2105–2155
nm). The MODIS sensor acquires daily images of the globe

at a spatial resolution of 250 m for red and NIR (841–875

nm) bands, and at a spatial resolution of 500 m for blue,

green, NIR (1230–1250 nm), and SWIR bands. The MODIS

Land Science Team provides a suite of standard data

products to the users (http://modis-land.gsfc.nasa.gov/),

including the 8-day Surface Reflectance Product

(MOD09A1) that has the above seven spectral bands at

500 m spatial resolution, and the 16-day Nadir Bidirectional

reflectance distribution function (BRDF) Adjusted Reflec-

tance (NBAR) Products (MOD43B4) that has the above

seven spectral bands at 1-km spatial resolution. The

MOD43B4 product provides a nadir-view reflectance in

all seven bands derived from the semiempirical BRDF

modeling product at the median solar zenith angle of

observations over a 16-day period (Strahler & Muller,

1999). Both the MOD09A1 and MOD43B4 datasets are

provided to users in a tile fashion; each tile covers 108
latitude by 108 longitude.

We downloaded the 8-day Surface Reflectance Product

(MOD09A1) and the 16-day NBAR (MOD43B4) datasets

for the period of 2/2000–12/2003 from the EROS Data

Center, U.S. Geological Survey (http://edc.usgs.gov/). Sur-

face reflectance values from these four spectral bands (blue,

red, NIR (841–875 nm) and SWIR (1628–1652 nm)) were

used to calculate the vegetation indices (NDVI, EVI, and

LSWI). The procedure employed for gap-filling of cloudy

pixels in the time series of vegetation indices derived from

MOD09A1 was the same as that used for the VGT data set

(see Section 3.2).

Based on the geo-location information (latitude and

longitude) of the CO2 flux tower site at the Tapajos km67

flux tower site, data of vegetation index data from the

MOD09A1 product were extracted from 3�3 MODIS

pixels (~1.5 km�1.5 km) that are centered on the flux

tower. For vegetation indices from the MOD43B4 product,

we only reported the data from one pixel (1-km�1-km) that

is centered on the flux tower site. Simulations of the VPM

model are driven by MODIS images in 2001–2002,

temporally consistent with the available field data in

2001–2002.
4. Results

4.1. Biophysical performance of vegetation indices from the

VGT images

We used time series data (1998–2002) of EVI and NDVI

to study leaf phenology of seasonally moist tropical forest.

When using the monthly precipitation threshold of b100

mm/month for definition of dry season (Saleska et al.,

2003), the dry season in 2001 began in July and ended in

December, and the dry season in 2002 began in June and

ended in October (Fig. 1). There were distinct and consistent

seasonal dynamics of EVI from 1998 to 2002 (Fig. 2a), with

http://www.free.vgt.vito.be
http://www.modis-land.gsfc.nasa.gov/
http://www.edc.usgs.gov/


Fig. 2. The seasonal dynamics of (a) enhanced vegetation index (EVI) from 4/1998 to 12/2002, (b) EVI and leaf litterfall (Saleska et al., 2003) from 2000 to

2002 at the CO2 eddy flux tower site in Santarém, Brazil.
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low values in June–July and high values in both the late dry

season (October–November) and wet season (February–

March). The field data showed that leaf litterfall had a

distinct seasonal dynamics in 2000–2002 (Fig. 2b). The

amounts of leaf litterfall increased gradually as the dry

season progressed and reached a peak in the middle of the

dry season (Fig. 2b).

The plant area index (PAI) at the Tapajos National Forest

varies between 5 and 7 m2/m2 over space and green

vegetation cover is over 90% (Huete et al., 2002). The

seasonal dynamics of EVI (Fig. 2a) in a year (e.g., from July

2000 to June 2001) is not likely be driven by a change in

leaf area index (LAI), as the canopy of seasonally moist

tropical evergreen forests has little change in LAI over

seasons. It is important to note that the forest canopy is
composed of mixed-age leaves. We hypothesize that the

seasonal distribution of EVI in a year (Fig. 2a) may be

attributed to both leaf fall of old leaves and emergence of

new leaves, resulting in dynamic changes in proportions of

young and old leaves within a vegetation canopy over

seasons. Leaf fall of old leaves reduces self-shading,

resulting in more sunlight penetrating into the canopy to

the remaining younger leaves, in other words, a higher

proportion of young leaves within the canopy are observed

by the satellite. In general, old leaves have less chlorophyll

and water content but more structural materials (e.g., lignin,

cellulose), in comparison to young leaves, which could lead

to significant changes in absorbance, transmittance, and

reflectance of leaves as the aging processes of leaves

progresses. In a field study that conducted leaf optical
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measurements of a number of tropical evergreen species

near Manaus in the Amazon basin (Roberts et al., 1998),

NIR absorbance showed significant change, increasing from

near zero for young leaves to 10% for old leaves. Canopy

reflectance is largely determined by light absorption of PAV

(chlorophyll) and liquid water and by light scattering of

NPV. NPV proportion at the leaf scale increases as (1) the

leaf ages and (2) the leaf responds to various environmental

stresses (e.g., drought, O3, fungi). Increased NIR absorbance

at the leaf scale may have a larger impact at the canopy scale

by dampening NIR scattering within a canopy and thereby

reducing canopy reflectance (Roberts et al., 1998). Thus,

removal of old leaves from the canopy (leaf litterfall) is

likely to result in an increase of NIR reflectance at the
Fig. 3. The seasonal dynamics of surface reflectance values of individual spectral b

Here, we used the reflectance values from the center pixel of the 3�3 pixel block.
canopy level. As shown in Fig. 3, NIR reflectance from the

VGT 10-day composite images started to increase in July of

2001 and June of 2002, temporally consistent with the

beginning of the dry season and dynamics of leaf litterfall

(Fig. 3).

EVI continued to increase after leaf litterfall peaked in

the middle of the dry season at the km67 site (Fig. 2a),

which may be attributed to continued removal of old

leaves throughout the dry season, followed by emergence

(flushing) of new leaves in the late dry season. The peak

EVI values had a time lag of one to 2 months after the

peak leaf litterfall (Fig. 2b). Observed decreases of EVI in

the mid to late wet season (March–May) could be largely

attributed to the aging processes of leaves, including
ands from 2000 to 2002 at the CO2 eddy flux tower site in Santarém, Brazil.

Rainfall data from the km67 flux tower site (see Fig. 1) were also included.
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increases of both leaf thickness and the nonphotosynthetic

vegetation (NPV) component (e.g., veins, cell walls)

within leaves. Although no seasonal field data of leaf

emergence at the km67 site are available, however, field

observations from other seasonal tropical forest sites

suggested that many drought-tolerant species with deep

roots tended to produce new leaves in the late dry season

(Van Schaik et al., 1993; Wright & van Schaik, 1994).

Field data at the Tapajós National Forest showed a pulse of

stem growth prior to the initiation of the wet season; and

increments of aboveground woody biomass (stem growth)

were larger in the wet season than in the dry season

(Saleska et al., 2003), which suggest that construction of

new leaves may be largely done during the late part of the

dry season. For the field site in Manaus, Roberts et al.
Fig. 4. The seasonal dynamics of normalized difference vegetation index (NDVI) f
(1998) reported that new leaf flush occurred mostly within

the dry season. Field observations also recorded that

epiphylls (fungi, lichens, algae, and bacteria) colonized

the mature leaves, which affected light transmittance and

absorption (Roberts et al., 1998). Relatively low EVI

values in the late wet season may be attributed to both leaf

age (older leaves) and epiphyll cover (Huete et al., 2003).

Young leaves have a higher photosynthetic capacity than

older leaves (Field, 1987), and therefore, it is essential to

track changes of the age-structure of leaves in the canopy,

which could substantially improve modeling of the

seasonal dynamics of photosynthesis.

The NDVI time series data (1998–2002) have signifi-

cantly different seasonal dynamics (Fig. 4a), in comparison

to EVI. NDVI values were very low in the wet season, but
rom 4/1998 to 12/2002 at the CO2 eddy flux tower site in Santarém, Brazil.
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reached peak values in July (2001) and June (2002), much

earlier than leaf litterfall reached its peak values (Fig. 4b).

Low NDVI values in the wet season (January to May) were

largely attributed to the effects of clouds and residual

atmosphere contamination, as indicated by relatively high

surface reflectance values of the red and blue bands (Fig. 3).

NDVI reaches a plateau during the early part (June, July) of

the dry season, largely attributed to its saturation problem

associated with the mathematic formation of NDVI. After

full leaf expansion, in the visible spectrum absorption

dominates and reflectance values of the red band are very

small. Thus, changes in the absorption of the red band have

minor impacts on the calculation of NDVI. Consequently,

NDVI remains a plateau level throughout the dry season (no
Fig. 5. The seasonal dynamics of (a) land surface water index (LSWI) and (b) pr

precipitation (mm) from the study area (Nepstad et al., 2002).
clouds effect). The comparison between NDVI and leaf

litterfall data suggests that NDVI does not reflect the subtle

changes in leaf and canopy of seasonally moist tropical

evergreen forests.

We used time series data (1998–2002) of LSWI to

assess the status of leaf and canopy water content of the

seasonally moist tropical forest over seasons. LSWI values

were generally higher in the dry season than in the wet

season (Fig. 5a). The seasonal dynamics of LSWI from

1999 to 2002 were negatively correlated (correlation

coefficient r=�0.56) with that of precipitation (Fig. 5b).

Soil moisture is lower in the dry season than in the wet

season (Saleska et al., 2003), however, observed evapo-

transpiration data from the flux tower site were higher in
ecipitation, at the km67 eddy flux tower site in Santarém, Brazil. precip—
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the late dry season than in the wet season (Fig. 6a).

Because of the closed forest canopy at the km67 site, soil

moisture is not being measured by the VGT sensor, and it

is liquid water in leaves that is being remotely sensed by

the VGT sensor. High LSWI values in the dry season may

be attributed to (1) high proportion of young leaves (with

more leaf water content) through leaf phenology as

indicated by the seasonal dynamics of EVI, and (2) higher

canopy-level equivalent water thickness (EWT, g H2O/m
2),

supplied through the deep root systems. Young leaves have

more water content than old leaves (Roberts et al., 1998).

Further field studies are needed to measure seasonal

variations in leaf water content (g H2O/m
2) at leaf and

canopy levels, although it is a technical challenge as trees
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in the tropical forest are very tall and thus it is difficult to

collect fresh leaf samples. The seasonal dynamics of LSWI

indicated that there was no water stress throughout the dry

season from 4/1998 to 12/2002 at the flux tower site.

4.2. Simulation of the VPM model, using 10-day VGT

composites

We ran the VPM model (Xiao et al., 2004a,b) to estimate

GPP, using LSWI, EVI, and site-specific climate (air

temperature and PAR) data (Fig. 1). As photosynthesis is

closely coupled with H2O flux, we use the observed H2O

flux (evapotranspiration) for the flux tower site to evaluate

the performance of the VPM model. The seasonal dynamics
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Fig. 7. The seasonal dynamics of temperature scalar (Tscalar) and water scalar (Wscalar) for the simulation of the VPM model.
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of predicted GPP agreed reasonably well with that of

observed evapotranspiration (Fig. 6). The VPM model

predicts high GPP in the late dry season, consistent with

high GPP estimates (GPPest) from the eddy flux tower

(Saleska et al., 2003).

GPPpred values are much higher in the dry season than in

the wet season, for instance, monthly GPPpred was 327 g C/

m2 in October 2002 (dry season) but 162 g C/m2 in April

2002 (wet season). The relatively low GPPpred in the wet

season can be attributed to a number of factors. First, there

was a much smaller amount of PAR available for photo-

synthesis because of frequent cloud cover in the wet season
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(Fig. 1), for instance, monthly PAR (photosynthetic photon

flux density) was 770 mole/m2 in April 2002 but 1135 mole/

m2 in October 2002, a difference of 32%. Secondly, the

averaged EVI value was lower in April 2002 (0.43) than in

October 2002 (0.56) (Fig. 2), a difference of 23%. As EVI

seasonal dynamics is related to leaf phenology (leaf fall, leaf

emergence) at the canopy level, this suggests that leaf

phenology could play an important role in the GPP

calculation of seasonally moist tropical forest. Thirdly,

Wscalar values were lower in April 2002 (0.91) than in

October 2002 (0.94), a difference of 3% (Fig. 7). Temper-

ature scalar (Tscalar) values varied little between April 2002
 Tapajos km67 site
(MODIS 3x3 pixels)

y interval)

02 7/1/02 1/1/03 7/1/03 1/1/04

S Surface Reflectance Product (MOD09A1) in 2000–2003 at the CO2 eddy



Fig. 9. The seasonal dynamics of vegetation indices derived from the 16-day MODIS Nadir BRDF-adjusted surface reflectance product (MOD43B4) in 2001–

2003 at the CO2 eddy flux tower site in Santarém, Brazil.
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and October 2000 (Fig. 7). A field-based light addition/

augmentation experiment for rainforest trees in Panama had

suggested that light, rather than water, temperature, or leaf

nitrogen, was the primary factor limiting CO2 uptake during

the rainy season (Graham et al., 2003). Annual sum of

predicted GPP in 2002 for the km67 site was about 2712 g

C/m2/year, within the range from 2400 C/m2/year at a

rainforest site near Rondonia (Lloyd et al., 1995) to 3040 g

C/m2/year at a rainforest site near Manaus, Brazil (Malhi

et al., 1998).

4.3. Seasonal dynamics of vegetation indices from MODIS

sensor

NDVI time series data derived from the 8-day

MOD09A1 product had lower values in the wet season

than in the dry season (Fig. 8). NDVI reached its plateau in

July of 2001 and June of 2002 (Fig. 8), similar to the NDVI

time-series derived from the 10-day VGT images (Fig. 4).

The seasonal dynamics of EVI derived from the 8-day

MOD09A1 product (Fig. 8) was substantially different from

that of NDVI. The EVI had low values in June–July but

high values in late dry season, which is similar to the

seasonal dynamics of EVI derived from the 10-day VGT

images (Fig. 2). The seasonal dynamics of LSWI also

increased gradually from the wet season to the dry season

(Fig. 8).

Time series of vegetation indices derived from the 16-

day MOD43B4 product had many missing data in the wet

season (Fig. 9), because there were not enough numbers (7

or more) of cloud-free observations within the 16-day

periods for implementing the BRDF correction algorithms.

EVI time series from the 16-day MOD43B4 product had

low values in June–July but high values in the late dry
season (Fig. 9), which is consistent with the EVI values

from the 8-day MOD09A1 product (Fig. 8).

4.4. Simulations of the VPM model, using 8-day MODIS

composite images

We ran the VPM model (Xiao et al., 2004a) using the

vegetation indices (Fig. 8) derived from the 8-day

MOD09A1 product and site-specific air temperature and

PAR data. As photosynthesis is closely coupled with H2O

flux, we use the observed H2O flux (evapotranspiration; mm

in 8-day) from the flux tower site to evaluate the perform-

ance of the VPM model. The VPM model predicts high GPP

in the late dry season, consistent with high GPP estimates

(GPPest) derived from the eddy flux tower data (Saleska et

al., 2003). The seasonal dynamics of predicted GPP agreed

reasonably well with that of observed evapotranspiration

(Fig. 10). The annual sum of GPPpred in 2002 from the VPM

model at the km67 site is about 2977 g C/m2/year.
5. Discussion

In this study, we evaluated the seasonal dynamics of

vegetation indices (EVI, LSWI and NDVI) from both the

VGT sensor and the MODIS sensors for a seasonally moist

tropical evergreen forest in Brazil. Strong seasonal dynam-

ics of EVI and LSWI from the VGT and MODIS sensors

were observed at the site, consistent with the observations

of EVI (Huete et al., 2002, 2003). In this study, our

explanations for the seasonal dynamics of EVI and LSWI

focus primarily on leaf phenology, leaf age, and leaf water

content. It is also important to note that a number of factors

could potentially affect the calculation and seasonal



Fig. 10. The seasonal dynamics of observed evapotranspiration (ET) and predicted gross primary production from the VPM model in 2001–2002 at the CO2

eddy flux tower site in Santarém, Brazil.
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dynamics of vegetation indices, including the shadow

canopy fraction within a pixel (Asner & Warner, 2003),

clouds, and smoke (Huete et al., 2002; Xiao et al., 2003).

Further studies are needed to quantify the relative roles of

those factors on the seasonal dynamics of vegetation

indices at 500-m (MODIS) to 1-km (VGT) spatial

resolutions over the Amazon basin. To conduct systematic

analyses of subpixel cloud cover and its impacts on

vegetation indices over seasons is out of the scope of this

paper because of budget and time constraint, however, here

we examined a Landsat ETM+ image for illustrating the

potential impact of sub-pixel cloud cover. Fig. 11 shows a

color composite of Landsat 7 ETM+ image (July 30, 2001,

band 5–4–3, Path–227 and Row-62) for the study area.

Digital Number (DN) values of the ETM+ image were
converted to reflectance, using the calibration procedure in

commercial image processing software (ENVI 3.6). Vege-

tation indices (NDVI, LSWI, and EVI) were calculated for

all the 30-m pixels of the ETM+ image. We first generated

a cloud mask through unsupervised image classification (6

spectral bands at 30-m spatial resolution) and interpretation

of the resultant spectral clusters. A river water body mask

(at 30-m spatial resolution) was also generated and used to

exclude those river water pixels from statistical analysis of

vegetation indices and blue band. Then we calculated the

percent fraction of cloud cover within 510-m pixels (a

block of 17�17 pixels at 30-m spatial resolution),

approximating to MODIS pixels at 500-m spatial reso-

lution. Finally, we calculated the mean values of blue band

reflectance, NDVI, EVI and LSWI within 510-m pixels.



Fig. 11. The false color composite image of a Landsat 7 ETM+ image that covers the CO2 eddy flux tower site in Santarém, Brazil (July 30, 2001; Path-227,

Row-62). Three spectral bands (5–4–3, RGB) were used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article).
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Fig. 12 shows the relationships between percent fractions

of cloud cover and reflectance of blue band and vegetation

indices within 510-m pixels. Reflectance values of blue

band indicate the atmospheric condition, including clouds

and aerosols. Most of pixels with a blue band reflectance

value of b 0.1 have a percent fraction of cloud cover below

20% (Fig. 12). When blue band reflectance value

approaches 0.2 or higher, most of pixels have a percent

fraction of cloud cover above 40%. Among the three

vegetation indices, NDVI is most sensitive to increases of
cloud cover within 510-m pixels, followed by EVI and

LSWI (Fig. 12). As shown in Fig. 3a, most of observations

in the dry season (July–November) had blue band

reflectance values of b0.1, which suggests that the sub-

pixel cloud cover, if existed during the dry season, is likely

to have minor impact on vegetation indices. In other words,

the dynamics of EVI and LSWI during the dry season

(Figs. 2 and 5) are likely to be attributed to the leaf and

canopy processes, as we described in the Results section.

Only a few observations in the wet season had blue



Fig. 12. The relationships between the percent fraction of cloud cover within 510-m pixels and reflectance (blue band) and vegetation indices for the study area

in Santarém, Brazil (see Fig. 11 for spatial domain). EVI—enhanced vegetation index; NDVI—normalized difference vegetation index; LSWI—land surface

water index. The number of pixels (11,240) with 0% fraction of cloud cover within 510-m pixels was excluded from the graph. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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reflectance value of b0.1, which suggests that careful

screening of cloud cover is needed. Future research needs

to include images from both Terra (morning pass) and Aqua

(afternoon pass) satellites, which together may provide more

cloud-free observations (particularly in the cloudy wet

season) and thus may improve our understanding of the

seasonal dynamics of vegetation indices in the seasonally

moist tropical forests.

In comparison to other production efficiency models

(PEM) that are based on the NDVI–LAI–FAPAR relation-

ships (Behrenfeld et al., 2001; Field et al., 1998; Nemani et

al., 2003; Running et al., 2000), the VPM model implements

three hypotheses and alternative approaches in its model

formulation (Xiao et al., 2004a,b). The first hypothesis is the

conceptual partitioning of PAV (chloroplasts) and NPV, and

we assumed that advanced vegetation indices (e.g., EVI) are

capable of tracking subtle changes in PAVand NPVat the leaf

level, in addition to canopy-level structural changes (leaf area

index, plant area index) of forests that usually has little

changes over plant growing seasons. In the second hypothesis

is the equivalent water thickness (EWT, gH2O/m
2) at leaf and

canopy levels, and we assume that advanced vegetation

indices (e.g., LSWI) are capable of tracking changes in leaf

water content over the plant growing season. In the third

hypothesis is the leaf phenology (leaf fall, leaf emergence),

and we assumed that improved vegetation indices (e.g., EVI

and LSWI) from advanced optical sensors are capable of

detecting subtle changes in leaf optical properties associated

with changes in anatomical, biochemical, and biophysical

properties at different leaf ages. Few studies have provided in

situ seasonal measurements of leaf optical properties over
plant growing seasons in the tropical forests (Roberts et al.,

1998). Here we suggest that future field work should focus on

seasonal measurements of leaf water content, chlorophyll,

dry matter, and leaf phenology (leaf fall and emergence of

new leaves) over seasons, in support of temporal analyses of

advanced vegetation indices (e.g., EVI and LSWI).

The results of this study are likely to have significant

implications to remote sensing analyses of seasonally moist

tropical forests, the carbon cycle and climate modeling.

First, the seasonal dynamics of NDVI (Fig. 4) differed

significantly from that of EVI and did not reflect subtle

changes in leaf phenology (leaf age), as indicated by leaf

litterfall data (Fig. 4). NDVI data are closely related to LAI

and have been widely used in the Production Efficiency

Models that estimate GPP and NPP of forest ecosystems

(Behrenfeld et al., 2001; Field et al., 1998; Nemani et al.,

2003) and in the land surface parameterization (Sellers et al.,

1996) for climate models. Although EVI and NDVI are

complementary vegetation indices (Huete et al., 2002), the

remarkable differences between EVI and NDVI seasonal

patterns in seasonally moist tropical forest (Figs. 2 and 4)

and temperate forests (Xiao et al., 2004a,b) call for long-

term observations of leaf phenology (leaf age) and spectral

measurements at the leaf and canopy levels over seasons, in

conjunction with CO2, H2O, and energy flux measurements.

In addition to measurements of canopy structure parameters

(e.g., leaf area index), future field efforts should focus on

measurements and analyses of anatomical, biochemical,

biophysical, and physiological and optical properties of

leaves over time. Our working hypothesis is that those

changes associated with different leaf ages are important
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factors and are likely to be tracked by advanced space-borne

sensors (e.g., VGT and MODIS).

Secondly, it has been suggested that old-growth season-

ally moist tropical forests have evolved two adaptive

mechanisms for maintaining high photosynthesis during

the late dry season. The first adaptive mechanism is the deep

roots system for access to water in deep soils (Nepstad et al.,

1994). The second adaptive mechanism is the leaf phenol-

ogy (seasonal dynamics of leaf fall and leaf emergence) that

ensures a large proportion of young foliage with high

photosynthetic capacity in the canopy to utilize PAR. These

hypotheses are supported indirectly by tower flux measure-

ments (daytime NEE, evapotranspiration) and analysis of

remote sensing indices (EVI, LSWI). The seasonal dynam-

ics of predicted GPP from the satellite-based VPM model

also suggested that a seasonally moist tropical evergreen

forest has higher photosynthesis in the dry season than in

the wet season. Information on deep root systems and leaf

phenology in tropical forests are critically needed for

biogeochemical, climate and hydrological, models, how-

ever, only limited field data are available on forests with

deep root systems (Nepstad et al., 1994; Schenk & Jackson,

2002). Our temporal analyses of improved vegetation

indices (EVI and LSWI) over seasons suggest that images

from advanced optical sensors may offer a new opportunity

to identify and map seasonally moist tropical forests with

these two adaptive mechanisms.

Seasonal dynamics of NEE between tropical forests and

atmosphere is determined by GPP and ecosystem respiration

(Re), however, to quantify the seasonal dynamics of GPP

and Re still remains a challenging task (Grace et al., 1995,

1996; Loescher et al., 2003; Saleska et al., 2003). Because

these two adaptive mechanisms of seasonally moist tropical

forests are not included, many process-based ecosystem

models (Botta et al., 2002; Tian et al., 1998) predict low

photosynthesis during the dry season, and may not

accurately predict the seasonal dynamics of the carbon

balance of a seasonally moist tropical forest (Saleska et al.,

2003). If the majority of old-growth stands of seasonally

moist tropical forest does have these two delicate and

interwoven adaptive mechanisms, they may be vulnerable to

very large-scale climate variability (e.g., prolonged drought,

strong El Niño event), which represents a significant

departure from their normal climate variability. Future

efforts in the development and refinement of biogeochem-

ical models for seasonally moist tropical forest should take

these two adaptive mechanisms into consideration. CO2 flux

data from eddy flux tower sites are playing an increasing

role in evaluating process- and satellite-based models (Law

et al., 2000; Turner et al., 2003; Xiao et al., 2004a). In

addition to CO2 flux data, we also suggest that H2O flux

data from the eddy flux tower sites should be used for

evaluating the process-based and satellite-based models,

particularly in those flux sites where there were large

numbers of missing CO2 flux data in the wet season, such as

the Tapajos km67 site (Saleska et al., 2003).
In summary, this study has explored the potential of

improved vegetation indices (EVI, LSWI) from advanced

optical sensors (e.g., VGT and MODIS) for improving

seasonal characterization of leaf phenology and canopy

water content of tropical evergreen forests at leaf and

canopy levels. It has also demonstrated the potential of the

VPM model for estimating GPP in a seasonally moist

tropical evergreen forest. The VPM model can be applied at

the global scale, driven by climate data and satellite images,

and the resultant GPP estimates from the VPM model can be

used in a diagnostic mode to constrain and improve

atmospheric inversion models (Denning et al., 1995) and

biogeochemical models (Botta et al., 2002; Tian et al., 1998)

with prognostic capacity.
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